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SOME REMARKS ON CHAIN PROLONGATIONS IN
DYNAMICAL SYSTEMS

Hahng-Yun Chu*, Ahyoung Kim**, and Jong-Suh Park***

Abstract. In this article, we discuss the notions of chain prolon-
gation functions on locally compact spaces and get some results for
the concepts. We show that chain prolongation function is a cluster
map.

1. Introduction

Poincaré firstly introduced the concept of prolongations in a special
sense. The notions of prolongations play an important role in studying
dynamical systems [2, 3, 14]. In [15], Ura showed that the concept was
closely related to the one of stabilities in the sense of Liapunov. Using the
notion of prolongations, Auslander and Seibert defined several stabilities
in [2]. Especially, they focused the notion of absolute stability of a
compact subset in a locally compact metric pace in terms of the concept
of prolongation. Also, it is proved that the definitions were characterized
by Liapunov functions and the presence of a fundamental system of
absolutely stable neighborhoods in [2]. In recent year, in [14], Souza and
Tozatti introduced the notions of prolongations and prolongational limit
sets on control systems and generalized several important concepts and
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results of recursiveness and dispersiveness from Bhatia and Szegö(See
[4]).

The concept of a pseudo-orbits(chains) was firstly used by Bowen [6]
and Conley [8]. The notion is a very useful tool to understand impor-
tant theories in the several fields of Mathematics and generates many
results about the induced concepts, for example, chain transitive, chain
recurrence, shadowing property and so on. See [1, 5, 10, 11, 12, 13, 16].

C. Ding introduced chain prolongation, with which he defined the
concept of chain stability which is induced by the different notions of
chain and stability and he obtained many interesting results for the
concept in [9]. In particular, he proved that chain prolongation function
is a cluster mapping but unfortunately we find some points in the proofs
unclear.

In this article, we mainly discuss the properties of chain prolongation
mappings. Also, we remove such unclear points in the proofs and so
clarify them. More precisely, we get alternative proofs for the results
related with chain prolongation functions and cluster maps.

2. Chain prolongation and stability

Let (X, d) be a locally compact metric space and π a flow, that is, π :
X×R→ X is a continuous map such that π(x, 0) = x and π(π(x, t), s) =
π(x, t + s) for x ∈ X and t, s ∈ R. For the convenience, we briefly
write x · t = π(x, t). For any x ∈ X, the orbit of x is defined by
O(x) = {x · t | t ∈ R}. A subset Y of X is called positively invariant
(invariant) under π if Y · R+ = Y (Y · R = Y ). For a point x of X, the
limit set of x is defined by

Λ+(x) :=
⋂

t≥0

x · [t,∞).

The limit set of x has a major role in Conley’s theory, and for its basic
properties we refer to [8, 9]. For x ∈ X, we also call the first prolonga-
tional limit set and first prolongational set of x as defined, respectively,
by

J+(x) :=
⋂

U∈N(x),t≥0

U · [t,∞),

D+(x) :=
⋂

U∈N(x)

U · R+,

where N(x) is the set of all neighborhoods of x.
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From the above definitions, we immediately obtain the following
equivalences.

Remark 2.1. For x ∈ X, the following equivalences hold.
(1) y ∈ Λ+(x) if and only if there is a sequence {tn} in R+ with

tn →∞ such that x · tn → y.
(2) y ∈ J+(x) if and only if there are a sequence {xn} in X and a

sequence {tn} in R+ such that xn → x, tn →∞ and xn · tn → y.
(3) y ∈ D+(x) if and only if there are a sequence {xn} in X and a

sequence {tn} in R+ such that xn → x and xntn → y.

Let Γ : X → 2X be a set-valued function and A ⊆ X. Then we may
canonically define the following equation,

Γ(A) = ∪x∈AΓ(x).

We let the composition Γ2 = Γ ◦ Γ given by

Γ2(x) = Γ(Γ(x)) = ∪y∈Γ(x)Γ(y),

so we can define naturally the iteration Γn : X → 2X inductively by
Γ1(x) = Γ(x) and Γn(x) = Γ(Γn−1(x)). The trajectory for the function
Γ is the union of the iteration Γn. For a family of functions Γi : X →
2X(i ∈ I), we mean the map ∪i∈IΓi : X → 2X defined by (∪i∈IΓi)(x) =
∪i∈I(Γi(x)). So we can naturally define the functions DΓ and SΓ from
X to 2X by

DΓ(x) := ∩U∈N(x)Γ(U) and SΓ(x) := ∪∞n=1Γ
n(x).

Lemma 2.2. Let Γ : X → 2X be a set-valued function on X and
x ∈ X. Then DΓ(x) is the set of all points y ∈ X with the property
that there exist sequences (xn) and (yn) in X with yn ∈ Γ(xn) such that
xn → x, yn → y. Furthermore, SΓ(x) is the set of all points y ∈ X such
that there is a finite subset {x1, · · · , xk} of X with the properties that
x1 = x, xk = y and xi+1 ∈ Γ(xi), i = 1, · · · , k − 1.

Proof. It is obvious from the definitions.

The above new mappings have interesting properties, especially the
mappings are idempotent. So it is clear that the iterations of the map-
pings are just the original mappings. See [7].

The map Γ : X → 2X is transitive provided SΓ = Γ. Note that Γ is
transitive if Γ2 = Γ. A mapping Γ is a cluster mapping if DΓ = Γ.

We recall the notions of chains and Ω-limit sets and refer the reader
to [8] for details. Let x, y be elements of X and ε, t positive real
numbers. An (ε, t)-chain from x to y means a pair of finite sequences



354 Hahng-Yun Chu, Ahyoung Kim, and Jong-Suh Park

x = x1, x2, · · · , xn, xn+1 = y in X and t1, t2, · · · , tn in R+ such that
ti ≥ t and d(xi · ti, xi+1) ≤ ε for all i = 1, 2, · · · , n. Define a relation R
in X ×X given by xRy means, for every ε > 0 and t > 0, there exists
(ε, t)-chain from x to y. We also denote (x, y) ∈ R by xRy.

For x ∈ X, we define the Ω-limit set of x by Ω(x) = {y ∈ X : (x, y) ∈
R}. We also canonically define a map Ω : X → 2X given by x 7→ Ω(x).

In [8], Conley studied the above notions in a compact metric space X.
He proved that the relation R is a closed transitive relation on X and also
showed that if (x, y) ∈ R and (s1, s2) ∈ R+×R+, then (x ·s1, y ·s2) ∈ R.

Observe that Ω(x) is a closed invariant subset of a compact metric
space X and J+(x) ⊆ Ω(x)(see [8, p.36] and [9, p.2721]).

The map P : X → 2X defined by P (x) = x · R+ ∪ Ω(x) is called a
chain prolongation. For each x ∈ X, the image P (x) = x ·R+ ∪Ω(x) of
x for the mapping P is said to be the chain prolongation set of x.

Lemma 2.3. If pn → p, qn → q and qn ∈ Ω(pn), then q ∈ Ω(p).

Proof. From the continuity of the flow, for every ε > 0, t > 0, there
is a neighborhood V of p such that V · t is contained in Nε(p · t). By
assumption, we can choose a natural number n satisfying pn ∈ V and
qn ∈ N ε

2
(q). So, since qn ∈ Ω(pn), there exists a ( ε

2 , 2t)-chain {pn =
x1, · · · , xm, xm+1 = qn; t1, · · · , tm} from pn to qn. Since pn ∈ V, we gave
that pn · t ∈ V · t ⊂ Nε(p · t) so d(p · t, pn · t) < ε. Furthermore,

d((pn · t)(t1 − t), x2) = d(pn · t1, x2) = d(x1 · t1, x2) ≤ ε

2
< ε,

d(xm · tm, q) ≤ d(xm · tm, qn) + d(qn, q) <
ε

2
+

ε

2
= ε.

Therefore, {p, pn · t, x2, · · · , xm, q; t, t1 − t, t2, · · · , tm} is an (ε, t)-chain
from p to q. Hence, we obtain q ∈ Ω(p) which completes the proof.

Remark 2.4. [9, p.2721] The followings are true.
(1) The chain prolongation P (x) is positively invariant, and closed in

X.
(2) P (P (x)) = P (x) so the chain prolongation P is transitive.
(3) C = {(x, y) ∈ X ×X : x ∈ X, y ∈ P (x)} is a closed and transitive

relation.

In [9, p.2721], Ding defined the set Pt(x) := x · [t,∞)∪Ω(x) and then
claimed that the set is identical to the following set

{y ∈ X | for each ε > 0, there is an (ε, t)−chain from x to y}.
Using this equality, Ding showed that the chain prolongation mapping
P is a cluster map. But unfortunately, the above equality cannot be
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guaranteed from the definition of Pt(x). Then, we can consider the
result without the equality and so we complete the above implication.
In view of our proof, it is out of use the notion of Pt(x).

Theorem 2.5. The chain prolongation function P is a cluster map,
that is,

(DP )(x) = P (x).

Proof. From the definition of DP (x), we immediately obtain that
P (x) ⊆ DP (x).

Conversely, let y be an element of DP (x). By Lemma 2.2, there are
two sequences {xn} and {yn} in X such that yn ∈ P (xn), xn → x and
yn → y. From the definition of the chain prolongation P , we have two
cases are depending upon whether the infinite subsequence {yni} of the
sequence {yn} is contained in the set ∪i>0xni ·R+ or ∪i>0Ω(xni). Here,
each yni is an element of xni · R+ or Ω(xni).

The first case is that a subsequence {yni} is contained in ∪i>0xni ·R+.
Thus we have that there exist positive real numbers ti, (i ∈ N) such
that yni = xni · ti. To show the inclusion, we begin by assuming that
the sequence {ti} is bounded. Since the sequence is bounded, there
exists convergent subsequence of {ti}. We can consider that the original
sequence {ti} is convergent to a positive real number t. We already knew
that the subsequence yni converges to y, yni = xni · ti and xni · ti → x · t.
So we have that y = x · t, that is, y is contained in x · R+. Now, we
consider {ti} to be unbounded, so may assume that {ti} → ∞. Since
xni · ti = yni , xni → x and yni → y, it implies y ∈ J+(x) by the remark
2.1. Since J+(x) ⊂ Ω(x), we get that y ∈ Ω(x).

In the remaining case, the infinite subsequence {yni} of {yn} is con-
tained in ∪i>0Ω(xni). Since the subsequence {xni} converges to x and
the subsequence {yni} also converges to y, by the lemma 2.3, y ∈ Ω(x).
This completes the claim. Therefore, we prove that P (x) = DP (x), that
is, P is a cluster map.
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